Global Birkhoff coordinates for the periodic Toda lattice

نویسندگان

  • Andreas Henrici
  • Thomas Kappeler
چکیده

In this paper we prove that the periodic Toda lattice admits globally defined Birkhoff coordinates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Birkhoff normal form for the periodic Toda lattice

with potential V (x) = γe + V1x + V2 and γ, δ, V1, V2 ∈ R constants. The Toda lattice has been introduced by Toda [12] and studied extensively in the sequel. It is an FPU lattice, i.e. a Hamiltonian system of particles in one space dimension with nearest neighbor interaction. Models of this type have been studied by Fermi-Pasta-Ulam [FPU]. In numerical experiments they found recurrent features ...

متن کامل

Global action-angle variables for the periodic Toda lattice

In this paper we construct global action-angle variables for the periodic Toda lattice.

متن کامل

A Rational Flow for the Periodic Toda Lattice Equations

Dedicated to my long-time friend and colleague, Paul Fuhrmann, on the occasion of his 60 th birthday Abstract We show how a certain class of Hamiltonian systems give rise to diierential equations on spaces of matrices whose elements are rational functions. In particular, we reinterpret the results of Kac and van Moerbeke on the periodic Toda lattice in terms of such diierential equations and re...

متن کامل

iv : m at h - ph / 0 50 70 51 v 1 2 0 Ju l 2 00 5 THE TODA LATTICE IS SUPER – INTEGRABLE

We prove that the classical, non–periodic Toda lattice is super–integrable. In other words, we show that it possesses 2N−1 independent constants of motion, where N is the number of degrees of freedom. The main ingredient of the proof is the use of some special action–angle coordinates introduced by Moser to solve the equations of motion. Mathematics Subject Classification: 37K10, 37J35, 70H06

متن کامل

Separation of variables for the D n type periodic Toda lattice

We prove separation of variables for the most general (Dn type) periodic Toda lattice with 2 × 2 Lax matrix. It is achieved by finding proper normalisation for the corresponding Baker-Akhiezer function. Separation of variables for all other periodic Toda lattices associated with infinite series of root systems follows by taking appropriate limits.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008